Part II. Market power

Chapter 3. Static imperfect competition
Oligopolies

- Industries in which a few firms compete
- Market power is collectively shared.
- Firms can’t ignore their competitors’ behaviour.
- **Strategic interaction** → Game theory

Oligopoly *theories*

- *Cournot* (1838) → quantity competition
- *Bertrand* (1883) → price competition
- Not competing but complementary theories
 - Relevant for different industries or circumstances
Organization of Part II

• Chapter 3
 • Simple settings: unique decision at single point in time
 • How does the nature of strategic variable (price or quantity) affect
 • strategic interaction?
 • extent of market power?

• Chapter 4
 • Incorporates time dimension: sequential decisions
 • Effects on strategic interaction?
 • What happens before and after strategic interaction takes place?
Case. DVD-by-mail industry

• Facts
 • < 2004: Netflix almost only active firm
 • 2004: entry by Wal-Mart and Blockbuster (and later Amazon), not correctly foreseen by Netflix

• Sequential decisions
 • Leader: Netflix
 • Followers: Wal-Mart, Blockbuster, Amazon

• Price competition
 • Wal-Mart and Blockbuster undercut Netflix
 • Netflix reacts by reducing its prices too.

• Quantity competition?
 • Need to store more copies of latest movies
Chapter 3. Learning objectives

• Get (re)acquainted with basic models of oligopoly theory
 • Price competition: Bertrand model
 • Quantity competition: Cournot model

• Be able to compare the two models
 • Quantity competition may be mimicked by a two-stage model (capacity-then-price competition)
 • Unified model to analyze price & quantity competition

• Understand the notions of strategic complements and strategic substitutes

• See how to measure market power empirically
Chapter 3 - Price competition

The standard Bertrand model

• 2 firms
 • Homogeneous products
 • Identical constant marginal cost: \(c \)
 • Set price simultaneously to maximize profits

• Consumers
 • Firm with lower price attracts all demand, \(Q(p) \)
 • At equal prices, market splits at \(\alpha_1 \) and \(\alpha_2 = 1 - \alpha_1 \)

\[Q_i(p_i) = \begin{cases}
Q(p_i) & \text{if } p_i < p_j \\
\alpha_i Q(p_i) & \text{if } p_i = p_j \\
0 & \text{if } p_i > p_j
\end{cases} \]
The standard Bertrand model (cont’d)

• Unique Nash equilibrium
 • Both firms set price = marginal cost: $p_1 = p_2 = c$
 • Proof
 • For any other (p_1, p_2), a profitable deviation exists.
 • Or: unique intersection of firms’ best-response functions
The standard Bertrand model (cont’d)

• ‘Bertrand Paradox’
 • Only 2 firms but perfectly competitive outcome
 • Message: there exist circumstances under which duopoly competitive pressure can be very strong

• Lesson: In a homogeneous product Bertrand duopoly with identical and constant marginal costs, the equilibrium is such that
 • firms set price equal to marginal costs;
 • firms do not enjoy any market power.
The standard Bertrand model (cont’d)

• ‘Bertrand Paradox’
 • Only 2 firms but perfectly competitive outcome
 • Message: there exist circumstances under which duopoly competitive pressure can be very strong

• Lesson: In a homogeneous product Bertrand duopoly with identical and constant marginal costs, the equilibrium is such that
 • firms set price equal to marginal costs;
 • firms do not enjoy any market power.

• Cost asymmetries: \(n \) firms, \(c_i < c_{i+1} \)
 • Equilibrium: any price \(p_i = p_j = p \in [c_1, c_2] \)
 • Select \(p^* = c_2 \)
Bertrand competition with uncertain costs

- Each firm has private information about its costs
 - Trade-off between margins and likelihood of winning the competition
 - See particular model in the book.

Lesson: In the price competition model with homogeneous products and private information about marginal costs, at equilibrium,
- firms set price above marginal costs;
- firms make strictly positive expected profits;
- more firms \rightarrow price-cost margins↓, output↑, profits↓;
- number of firms explodes \rightarrow competitive limit.
Price competition with differentiated products

- Firms may avoid intense competition by offering products that are imperfect substitutes.
- **Hotelling model** (1929)

$$\tau(x - l_1) \quad \tau(l_2 - x)$$

Disutility from travelling

Mass 1 of consumers, uniformly distributed
Hotelling model (cont’d)

• Let r be the reservation price.

• In the 2nd stage, consumer x’s utility is
 \[r - \tau |l_i - x| - p_i \]
 if he purchase from firm i.

• Consumer x purchases from firm 1 if
 \[r - \tau |l_1 - \hat{x}| - p_1 > r - \tau |l_2 - \hat{x}| - p_2 \]

• Consumer x purchases from firm 2 if
 \[r - \tau |l_1 - \hat{x}| - p_1 < r - \tau |l_2 - \hat{x}| - p_2 \]

• The indifferent consumer \hat{x} solves
 \[r - \tau |l_1 - \hat{x}| - p_1 = r - \tau |l_2 - \hat{x}| - p_2 \]
Hotelling model (cont’d)

- Demand for firm 1 is
 \[Q_1(p_1, p_2) = \hat{x} = \frac{1}{2} + \frac{p_2 - p_1}{2\tau} \]

- Demand for firm 2 is
 \[Q_2(p_1, p_2) = 1 - \hat{x} = \frac{1}{2} + \frac{p_1 - p_2}{2\tau} \]
Hotelling model (cont’d)

• Suppose location at the extreme points

\[\hat{x} = \frac{1}{2} + \frac{p_2 - p_1}{2\tau} \]

Indifferent consumer

\[p_2 + \tau(1 - x) \]
\[p_1 + \tau x \]
Hotelling model (cont’d)

- In the 1st stage, firm \(i \) solves
 \[
 \max_{p_i} (p_i - c) Q_i(p_i, p_j)
 \]

- Plugging the demand for firm \(i \), we can rewrite the maximization problem,
 \[
 \max_{p_i} (p_i - c) \left[\frac{1}{2} + \frac{p_j - p_i}{2\tau} \right]
 \]

- FOC: \[
 \frac{1}{2\tau} (p_j - 2p_i + c + \tau) = 0
 \]

- Solving for \(p_i \), \(p_i(p_j) = \frac{c + \tau}{2} + \frac{1}{2} p_j \)
Hotelling model (cont’d)

\[pi = \frac{c + \tau}{2} \]

\[pj = \frac{c + \tau}{2} \]

\[c + \tau \]

\[pi(pj) \]
Hotelling model (cont’d)

• Resolution
 • Firm’s problem:
 \[
 \max_{p_i} (p_i - c) \left(\frac{1}{2} + \frac{p_j - p_i}{2\tau} \right)
 \]
 • From FOC, best-response function:
 \[
 p_i = \frac{1}{2} (p_j + c + \tau)
 \]
 • Equilibrium prices:
 \[
 p_i = p_j = c + \tau
 \]

• Lesson: If products are more differentiated, firms enjoy more market power.

• Extensions
 1. Localized competition with \(n \) firms: Salop (circle) model
 2. Asymmetric competition with differentiated products
Extension 1: Salop model

• Setting
 • Firms equidistantly located on circle with circumference 1
 • Consumers uniformly distributed on circle
 • They buy at most one unit, from firm with lowest ‘generalized price’
 • Unit transportation cost, τ

\[
\begin{align*}
&\text{Firm } i \text{'s demand} \\
&\quad \hat{x}_{i,i+1} = \frac{2i + 1}{2n} + \frac{p_{i+1} - p_i}{2\tau}
\end{align*}
\]
Extension 1: Salop model (cont’d)

- Similarly, \(\hat{x}_{i-1,i} \) solves,
 \[
 r - \tau \left(\frac{i - 1}{n} - \hat{x}_{i-1,i} \right) - p_{i-1} = r - \tau \left(\hat{x}_{i-1,i} - \frac{i}{n} \right) - p_i
 \]

- Solving for \(\hat{x}_{i-1,i} \),
 \[
 \hat{x}_{i-1,i} = \frac{2i-1}{2n} + \frac{p_i - p_{i-1}}{2\tau}
 \]

- Assume \(p_{i-1} = p_{i+1} = p \), the demand for firm \(i \) is
 \[
 Q_i(p_i) = \hat{x}_{i,i+1} - \hat{x}_{i-1,i} = \frac{1}{n} - \frac{p - p_i}{\tau}
 \]
Extension 1: Salop model (cont’d)

• Focus on symmetric equilibrium

• Firm i’s problem:

$$\max_{p_i} (p_i - c)Q(p_i, p) = (p_i - c) \left(\frac{1}{n} + \frac{p - p_i}{\tau} \right)$$

• FOC: \[1/n + (p - 2p_i + c)/\tau = 0\]

• Setting $p_i = p$ yields:

\[p^* = c + \tau/n\]

• $n \uparrow \rightarrow$ closer substitutes on the circle
 \[\rightarrow\text{competitive pressure} \uparrow \rightarrow p^* \downarrow\]

• If $nn \rightarrow \infty$, then $p^* \rightarrow c$ (perfect competition)
Extension 2: Asymmetric competition with differentiated products

• Same setting as Hotelling model
• Only difference: product 1 is of superior quality
 • Consumer’s indirect utility:
 \[
 \begin{cases}
 r_1 - \tau x - p_1 & \text{if buy 1} \\
 r_2 - \tau(1-x) - p_2 & \text{if buy 2}
 \end{cases}
 \]
 with \(r_1 > r_2 \)

• Assume: \(r_2 + \tau > r_1 \) \(\rightarrow \) product 2 more attractive for some consumers

• Indifferent consumer
 \[
 \hat{x} = \frac{1}{2} + \frac{(r_1 - r_2) - (p_1 - p_2)}{2\tau} = Q_1(p_1, p_2)
 \]
Extension 2: Asymmetric competition with differentiated products (cont’d)

• Firm 1 chooses \(p_1 \) to maximize \((p_1 - c) Q_1(p_1, p_2) \)
• Similarly for firm 2.
• Solving for the two FOCs:

\[
\begin{align*}
 p_1^* &= c + \tau + \frac{1}{3}(r_1 - r_2) \\
 p_2^* &= c + \tau - \frac{1}{3}(r_1 - r_2)
\end{align*}
\]

\[
Q_1(p_1^*, p_2^*) = \frac{1}{2} + \frac{r_1 - r_2}{6\tau}
\]

• High-quality firm sets a higher price and sells more.
Extension 2: Asymmetric competition with differentiated products (cont’d)

- Firm i chooses p_i to solve
 \[
 \max_{p_i} (p_i - c)Q_i(p_i, p_j)
 \]

- FOC:
 \[
 \frac{1}{2\tau} [p_j - 2p_i + c + \tau + (r_i - r_j)] = 0
 \]

- Solving for $p_i(p_j)$,
 \[
 p_i(p_j) = \frac{c + \tau + (r_i - r_j)}{2} + \frac{1}{2} p_j
 \]
Extension 2: Asymmetric competition with differentiated products (cont’d)

• Welfare maximization → sell at marginal cost

\[Q_1(c, c) = \frac{1}{2} + \frac{r_1 - r_2}{2\tau} > Q_1(p_1^*, p_2^*) = \frac{1}{2} + \frac{r_1 - r_2}{6\tau} \]

• Firm 1’s equilibrium demand is too low from a social point of view.

• Same analysis if \(r_1 = r_2 = r \), but \(c_1 < c_2 \)

• **Lesson:** Under imperfect competition, the firm with higher quality or lower marginal cost sells too few units from a welfare perspective.
The linear Cournot model

- **Model**
 - Homogeneous product market with *n* firms
 - Firm *i* sets quantity *q*_i
 - Total output: *q* = *q*₁ + *q*₂ + … + *q*_n
 - Market price given by *P*(*q*) = *a* − *bq*
 - Linear cost functions: *C*_i(*q*_i) = *c*_i *q*_i
 - Notation: *q*_{-i} = *q* − *q*_i

- **Residual demand**

\[
P(q) = (a - bq_{-i}) - bq_i
\equiv d(q_i; q_{-i})
\]
The linear Cournot model (cont’d)

• Firm’s problem
 • Cournot conjecture: rivals don’t modify their quantity
 • Firm \(i \) acts as a monopolist on its residual demand:

 \[
 \max_{q_i} (P(q) - c_i)q_i
 \]

 \[
 a - c_i - 2bq_i - bq_{-i} = 0
 \]

 • Best-response function:

 \[
 q_i(q_{-i}) = \frac{1}{2b} (a - c_i - bq_{-i})
 \]

• Nash equilibrium in the duopoly case

 • Assume: \(c_1 \leq c_2 \) and \(c_2 \leq (a + c_1) / 2 \)

 • Then,

 \[
 q_1^* = \frac{1}{3b} (a - 2c_1 + c_2) \quad \text{and} \quad q_2^* = \frac{1}{3b} (a - 2c_2 + c_1)
 \]

 \[
 q_1^* \geq q_2^* \Rightarrow \pi_1^* \geq \pi_2^*
 \]
The linear Cournot model (cont’d)

\[q_i \]

\[\frac{a - c_i}{2} \]

\[BRF_i \]

\[-\frac{1}{2} \]
The linear Cournot model (cont’d)

• Duopoly

\[q_1(q_2) = \frac{a - c_2}{b} \]
\[q_2(q_1) = \frac{a - c'_2}{b} \]
\[q_1(q_2) = \frac{a - c_1}{2b} \]

\[c'_2 > c_2 > c_1 \]

• **Lesson**: In the linear Cournot model with homogeneous products, a firm’s equilibrium profit increases when the firm becomes relatively more efficient than its rivals.
Symmetric Cournot oligopoly

• Suppose that \[c_i = c \] for all \(i = 1 \leq n \)

• Then

\[
q^*(n) = \frac{a - c}{b(n + 1)} \rightarrow L(n) = \frac{p^*(n) - c}{p^*(n)} = \frac{a - c}{a + nc}
\]

• If \(n \uparrow \rightarrow \) individual quantity \(\downarrow \), total quantity \(\uparrow \), market price \(\downarrow \), markup \(\downarrow \)

• If \(n \rightarrow \infty \), then markup \(\rightarrow 0 \)

• **Lesson**: The (symmetric linear) Cournot model converges to perfect competition as the number of firms increases.
Implications of Cournot competition

- General demand and cost functions
- Cournot pricing formula (details see next slide)

\[
\frac{P(q) - C_i'(q_i)}{P(q)} = \frac{\alpha_i}{\eta} \quad \text{with } \alpha_i = \frac{q_i}{q}
\]

Lesson: In the Cournot model, the markup of firm \(i \) is larger the larger is the market share of firm \(i \) and the less elastic is market demand.

- If marginal costs are constant

\[
\frac{p - \sum_{i=1}^{n} \alpha_i c_i}{p} = \frac{I_H}{\eta} \quad \text{with } I_H = \sum_{i=1}^{n} \alpha_i^2, \text{ Herfindahl index}
\]

Average Lerner index
Details: Cournot pricing formula

• Firm i chooses q_i to solve
 \[
 \max_{q_i} \pi_i = P(q)q_i - C_i(q_i)
 \]

• FOC:
 \[
P'(q)q_i + P(q) - C'_i(q_i) = 0
 \]

\[
\Rightarrow \frac{P(q) - C'_i(q_i)}{P(q)} = -\frac{P'(q)q_i}{P(q)} \frac{q}{q}
\]

Inverse of elasticity

Market share
Details: Cournot pricing formula

• F.O.C. of profit maximization for Cournot firm

\[P'(q)q_i + P(q) - C'_i(q_i) = 0 \iff P(q) - C'_i(q_i) = -P'(q)q_i \iff \]
\[\frac{P(q) - C'_i(q_i)}{P(q)} = \frac{-P'(q)q_i}{P(q)q} = \frac{1}{\eta} \alpha_i \]

• Suppose constant marginal costs: \(C_i(q_i) = c_i q_i \)

\[\frac{p - c_i}{p} = \frac{\alpha_i}{\eta} \to \sum_{i=1}^{n} \pi_i = \sum_{i=1}^{n} (p - c_i) \alpha_i q = \begin{cases} (p - \sum_{i=1}^{n} \alpha_i c_i)q \\ \frac{pq}{\eta} \sum_{i=1}^{n} \alpha_i^2 \end{cases} \]

\[\Rightarrow \frac{p - \sum_{i=1}^{n} \alpha_i c_i}{p} = \frac{\sum_{i=1}^{n} \alpha_i^2}{\eta} = \frac{I_H}{\eta} \]

→ Lerner index (weighted by market shares) is proportional to Herfindahl index
Price versus quantity competition

• Comparison of previous results
 • Let $Q(p) = a - p$, $c_1 = c_2 = c$
 • Bertrand: $p_1 = p_2 = c$, $q_1 = q_2 = (a - c)/2$, $\pi_1 = \pi_2 = 0$
 • Cournot: $q_1 = q_2 = (a - c)/3$, $p = (a + 2c)/3$, $\pi_1 = \pi_2 = (a - c)^2/9$

• **Lesson**: Homogeneous product case \rightarrow higher price, lower quantity, higher profits under quantity than under price competition.

• To refine the comparison
 • Limited capacities of production
 • Direct comparison within a unified model
 • Identify characteristics of price or quantity competition
Limited capacity and price competition

• Edgeworth’s critique (1897)
 • Bertrand model: no capacity constraint
 • But capacity may be limited in the short run.

• Examples
 • Retailers order supplies well in advance
 • DVD-by-mail industry
 • Larger demand for latest movies → need to hold extra stock of copies → higher costs and stock may well be insufficient
 • Flights more expensive around Xmas

• To account for this: two-stage model
 1. Firms precommit to capacity of production
 2. Price competition
Capacity-then-price model (Kreps & Scheinkman)

• Setting
 • Stage 1: firms set capacities \bar{q}_i and incur cost of capacity, c
 • Stage 2: firms set prices p_i; cost of production is 0 up to capacity (and infinite beyond capacity); demand is $Q(p) = a - p$.
 • Subgame-perfect equilibrium: firms know that capacity choices may affect equilibrium prices

• Rationing
 • If quantity demanded to firm i exceeds its supply...
 • ... some consumers have to be rationed...
 • ... and possibly buy from more expensive firm j.
 • Crucial question: Who will be served at the low price?
Capacity-then-price model (cont’d)

- **Efficient rationing**
 - First served: consumers with higher willingness to pay.
 - Justification: queuing system, secondary markets

Consumers with highest willingness to pay are served at firm 1’s low price

Consumers with unit demand, ranked by decreasing willingness to pay

There is a positive residual demand for firm 2

Excess demand for firm 1
Capacity-then-price model (cont’d)

• **Equilibrium** (details next slides)

 • **Stage 2.** If \(p_1 < p_2 \) and excess demand for firm 1, then demand for 2 is:

 \[
 Q(p_2) = \begin{cases}
 Q(p_2) - \bar{q}_1 & \text{if } Q(p_2) - \bar{q}_1 \geq 0 \\
 0 & \text{else}
 \end{cases}
 \]

 Claim: if \(c < a < \left(\frac{4}{3}\right)c \), then both firms set the market-clearing price: \(p_1 = p_2 = p^* = a - \bar{q}_1 - \bar{q}_2 \)

 • **Stage 1.** Same reduced profit functions as in Cournot:

 \[
 \bar{\pi}_1(\bar{q}_1, \bar{q}_2) = (a - \bar{q}_1 - \bar{q}_2)\bar{q}_1 - c\bar{q}_1
 \]

• **Lesson:** In the capacity-then-price game with efficient consumer rationing (and with linear demand and constant marginal costs), the chosen capacities are equal to those in a standard Cournot market.
Details: Capacity-then-price model

• Setting
 • Stage 1: firms set capacities \(\bar{q}_i \) and incur cost of capacity, \(c \)
 • Stage 2: firms set prices \(p_i \); cost of production is 0 up to capacity (and infinite beyond capacity); demand is \(Q(p) = a - p \).
• Subgame-perfect equilibrium: firms know that capacity choices may affect equilibrium prices
• Efficient rationing

• Upper bound on capacity at stage 1

\[
c\bar{q}_i \leq \max_q (a - q)q = a^2 / 4 \Leftrightarrow \bar{q}_i \leq a^2 / (4c)
\]
Details: Capacity-then-price model (cont’d)

• Claim: if \(c < a < (4/3)c \), then both firms set the market-clearing price: \(p_1 = p_2 = p^* = a - \bar{q}_1 - \bar{q}_2 \)

• Proof
 • Let \(p_1 = p^* \) and show that 2’s best-response is \(p_2 = p^* \).
 • \(p_2 < p^* \) doesn’t pay: same quantity (because firm 2 sells all its capacity) sold at lower price
 • \(p_2 > p^* \) could pay as firm 1 is capacity constrained...
 For this, revenues should be increasing at \(p^* \) ...
 • Firm 2’s revenues:
 \[
 p_2 Q(p_2) = \begin{cases}
 p_2 (a - p_2 - \bar{q}_1) & \text{if } a - p_2 \geq \bar{q}_1, \\
 0 & \text{else}
 \end{cases}
 \]
Details: Capacity-then-price model (cont’d)

• Proof (cont’d)

 • Max reached at \(\bar{p}_2 = \frac{(a - \bar{q}_1)}{2} \)

 • Revenues are decreasing at \(p^* \) if

\[
p^* > \bar{p}_2 \iff a - \bar{q}_1 - \bar{q}_2 > \frac{a - \bar{q}_1}{2} \iff a > \bar{q}_1 + 2\bar{q}_2
\]

Since \(\bar{q}_1, \bar{q}_2 \leq \frac{a^2}{4c} \), \(\bar{q}_1 + 2\bar{q}_2 \leq (3/4)(a^2/c) \)

Assumption \(a < (4/3)c \) \(\iff (3/4)(a/c) < 1 \)

• Hence, not profitable to set \(p_2 > p^* \). QED
Capacity Constraints
• Go to EconS 503’s website, Chapter 8, slides 178-192

Cournot Model of Quantity Competition
• Go to EconS 503’s website, Chapter 8, slides 102-141

Product Differentiation
• Go to EconS 503’s website, Chapter 8, slides 142-153
Differentiated products: Cournot vs. Bertrand

Setting

• Duopoly, substitutable products \((b > d > 0)\)
• Consumers maximize linear-quadratic utility function

\[
U(q_0, q_1, q_2) = aq_1 + aq_2 - (bq_1^2 + 2dq_1q_2 + bq_2^2) / 2 + q_0
\]

under budget constraint

\[
y = q_0 + p_1q_1 + p_2q_2
\]

• Inverse demand functions

\[
\begin{align*}
P_1(q_1, q_2) &= a - bq_1 - dq_2 \\
P_2(q_1, q_2) &= a - bq_2 - dq_1
\end{align*}
\]

Demand functions

\[
\begin{align*}
Q_1(p_1, p_2) &= \bar{a} - \bar{b}p_1 + \bar{d}p_2 \\
Q_2(p_1, p_2) &= \bar{a} - \bar{b}p_2 + \bar{d}p_1
\end{align*}
\]

with

\[
\bar{a} = a / (b + d), \quad \bar{b} = b / (b^2 - d^2), \quad \bar{d} = d / (b^2 - d^2)
\]
Chapter 3 - Price vs. quantity

Differentiated products

- Maximization program
 - Cournot: \(\max_{q_i} (a - bq_i + dq_j - c_i)q_i \)
 - Bertrand: \(\max_{p_i} (p_i - c_i)(\bar{a} - \bar{b}p_i + \bar{d}p_j) \)

- Best-response functions
 - Cournot: \(q_i(q_j) = (a - dp_j - c_i)/(2\bar{b}) \)
 - Bertrand: \(p_i(p_j) = (\bar{a} + \bar{d}p_j + \bar{b}c_i)/(2\bar{b}) \)

Downward-sloping \(\rightarrow \) Strategic substitutes
Upward-sloping \(\rightarrow \) Strategic complements

- Comparison of equilibria

- Lesson: Price as the strategic variable gives rise to a more competitive outcome than quantity as the strategic variable.
Appropriate modelling choice: price or quantity?

• Monopoly: it doesn’t matter.

• Oligopoly: price and quantity competitions lead to different residual demands
 • Price competition
 • p_j fixed \rightarrow rival willing to serve any demand at p_j
 • i’s residual demand: market demand at $p_i < p_j$; zero at $p_i > p_j$
 • So, residual demand is very sensitive to price changes.
 • Quantity competition
 • q_j fixed \rightarrow irrespective of price obtained, rival sells q_j
 • i’s residual demand: “what’s left” (i.e., market demand – q_j)
 • So, residual demand is less sensitive to price changes.
Appropriate modelling choice (cont’d)

• How do firms behave in the market place?
 • Stick to a price and sell any quantity at this price?
 → price competition
 → appropriate choice when
 • Unlimited capacity
 • Prices more difficult to adjust in the short run than quantities
 • Example: mail-order business
 • Stick to a quantity and sell this quantity at any price?
 → quantity competition
 → appropriate choice when
 • Limited capacity (even if firms are price-setters)
 • Quantities more difficult to adjust in the short run than prices
 • Example: package holiday industry
• Influence of technology (e.g. Print-on-demand vs. batch printing)
Strategic substitutes and complements

• How does a firm react to the rivals’ actions?

• Look at the slope of reaction functions.

 • **Upward sloping:** competitor \(\uparrow \) its action \(\rightarrow \) marginal profitability of my own action \(\uparrow \)
 \(\rightarrow \) variables are strategic **complements**

 • **Example:** price competition (with substitutable products);
 See Bertrand and Hotelling models

 • **Downward sloping:** competitor \(\uparrow \) its action \(\rightarrow \) marginal profitability of my own action \(\downarrow \)
 \(\rightarrow \) variables are strategic **substitutes**

 • **Example:** quantity competition (with substitutable products);
 see Cournot model
Strategic substitutes and complements (cont’d)

- Linear demand model of product differentiation
 (with d measuring the degree of product substitutability)

![Diagram showing price vs. quantity competition with d and Δ^{-d}](image)
Estimating market power

• Setting
 • Symmetric firms producing homogeneous product
 • Demand equation: \(p = P(q,x) \) \((1) \)
 • \(q \): total quantity in the market
 • \(x \): vector of exogenous variables affecting demand (not cost)
 • Marginal costs: \(c(q,w) \)
 • \(w \): vector of exogenous variables affecting (variable) costs

• Interpretation 1. Nest various market structures in a single model

\[
MR(\lambda) = p + \lambda \frac{\partial P(q,x)}{\partial q}
\]

\(\lambda = 0 \) competitive market
\(\lambda = 1 \) monopoly
\(\lambda = 1 / n \) \(n \)-firm Cournot

Firm’s conjecture as to how strongly price reacts to its change in output
Estimating market power (cont’d)

• Interpretation 1 (cont’d)
 • Basic model to be estimated non-parametrically: demand equation (1) + equilibrium condition (2)

 \[MR(\lambda) = p + \lambda \frac{\partial P(q, x)}{\partial q} q = c(q, w) \]

• Interpretation 2. Be agnostic about precise game being played
 • From equilibrium condition (2), Lerner index is

 \[L = \frac{p - c(q, w)}{p} = -\lambda \frac{\partial P(q, x)}{\partial q} \frac{q}{p} = \frac{\lambda}{\eta} \]

 • (2) is identified if single \(c(q, w) \) and single \(\lambda \) satisfy it
Review questions

• How does product differentiation relax price competition? Illustrate with examples.

• How does the number of firms in the industry affect the equilibrium of quantity competition?

• When firms choose first their capacity of production and next, the price of their product, this two-stage competition sometimes looks like (one-stage) Cournot competition. Under which conditions?

• Using a unified model of horizontal product differentiation, one comes to the conclusion that price competition is fiercer than quantity competition. Explain the intuition behind this result.
Review questions (cont’d)

- Define the concepts of strategic complements and strategic substitutes. Illustrate with examples.

- What characteristics of a specific industry will you look for to determine whether this industry is better represented by price competition or by quantity competition? Discuss.