1. **Mergers between several firms.** Consider an industry of \(n \geq 2 \) firms competing \(a la \) Cournot. Let us analyze the following sequential-move game where, in the first stage, every firm chooses whether or not to merge with other \(k - 1 \) firms (so \(k \) firms merge and the remaining \(n - k \) firms do not); and, in the second stage, firms compete \(a la \) Cournot. The \(k \) firms that merge coordinate their production decision to maximize their joint profits while the remaining \(n - k \) firms do not coordinate. Firms face an inverse demand curve \(p(Q) = a - Q \), where \(a > 0 \) and \(Q \geq 0 \) denotes aggregate output. Firms are symmetric in their marginal cost of production \(c \), where \(a > c \geq 0 \).

(a) As a benchmark, find the profits of every firm \(i \) before the merger.

- If no merger occurs, every firm solves

\[
\max_{q_i} (a - q_i - Q_{-i})q_i - cq_i
\]

where \(Q_{-i} \) denotes the aggregate output of firm \(i \)'s rivals. Differentiating with respect to \(q_i \), and solving for \(q_i \), we find firm \(i \)'s best response function

\[
q_i(Q_{-i}) = \frac{a - c}{2} - \frac{1}{2}Q_{-i}
\]

which is negatively sloped in its rivals' aggregate output, \(Q_{-i} \). In a symmetric equilibrium, \(q_i = q_j = q \) for every two firms \(i \neq j \), which entails \(Q_{-i} = (N - 1)q \). Therefore, the above best response function simplifies to

\[
q = \frac{a - c}{2} - \frac{1}{2}(N - 1)q
\]

and, solving for \(q \), we obtain the equilibrium output of every firm \(i \) when no merger occurs:

\[
q = \frac{a - c}{n + 1}.
\]

Then, equilibrium profits become

\[
\pi^{NM} = \left(\frac{a - c}{n + 1}\right)^2
\]

where the superscript \(NM \) indicates “no merger.”

(b) Find the profits that every merging firm earns.
• When \(k \) firms merge, leaving \(n - k \) unmerged firms, the total number of firms becomes \((n - k) + 1\). In this setting, equilibrium profits are

\[
\pi^M = \left(\frac{a - c}{(n - k) + 1 + 1} \right)^2 = \left(\frac{a - c}{n - k + 2} \right)^2
\]

where the superscript \(M \) indicates “merger.”

(c) For which values of \(n \) and \(k \) can a merger be sustained in equilibrium? Interpret.

• A merger between \(k \) out of \(n \) firms is profitable if the post-merger profits exceed the pre-merger profits (for all firms that merged, as a whole), that is,

\[
\pi^M \geq k\pi^{NM}
\]

or

\[
\left(\frac{a - c}{n - k + 2} \right)^2 \geq k \left(\frac{a - c}{n + 1} \right)^2
\]

which we can start simplifying as

\[(n + 1)^2 \geq k(n - k + 2)^2\]

or, further rearrange as

\[(k - 1) [-(k^2 + 2n + 3)k - (n + 1)^2] \geq 0.\]

Since \(k \geq 2 \) by definition (a merger must include at least two firms), we can solve for \(k \) in the second term to obtain

\[k \geq \frac{2n + 3 - \sqrt{4n + 5}}{2} = \hat{k}.\]

Intuitively, for a merger to be profitable, it must be large enough, \(k \geq \hat{k} \). Otherwise, the merger is not profitable.

• **Interpretation.** Recall the positive and negative effect of a merger on profits when firms compete a la Cournot:

 - **Positive effect.** On one hand, a merger generates a positive effect on profits since firms reduce their output when coordinating their actions, which raises prices, and thus margins.

 - **Negative effect.** On the other hand, however, this output reduction leads the unmerged \(n - k \) firms to respond by increasing their output levels (since best response functions are negatively sloped in this setting), which decreases the profits of the \(k \) firms that merged.

Our above result says that the positive effect of the merger dominates the negative effect when the number of firms merging is sufficiently high, \(k \geq \hat{k} \), since in that case the negative effect from the merger is relatively low.
An alternative presentation of the above result divides both sides of the inequality by n, to obtain
\[\frac{k}{n} \geq \frac{\hat{k}}{n}. \]
This rearranged inequality says that, for the merger to be profitable, the market share that the merged firms represent $\frac{k}{n}$ (left-hand side) must be larger than $\frac{\hat{k}}{n}$ (right-hand side). In particular,
\[\frac{\hat{k}}{n} = \frac{2n + 3 - \sqrt{4n + 5}}{2n} \]
which is a ratio extremely close to 0.8. Indeed, when $n = 2$, cutoff $\frac{\hat{k}}{n}$ becomes 0.848, when $n = 3$ this cutoff is 0.812, when $n = 4$ the cutoff is 0.802, and when $n = 5$ the cutoff becomes 0.8. Intuitively, this means that, for the merger to be profitable, at least 80% of the firms must merge; which explains why this result is informally known as the “80% rule” after Salant et al. (1983).

References