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EconS 503 – Advanced Microeconomics II1 

Adverse Selection 

Handout on Two-part tariffs (Second-degree price discrimination) 

 

1. Introduction 

Consider a setting where an uninformed firm is attempting to sell an item to a privately informed 
customer. The firm’s profit function is 𝐹𝐹 − 𝑐𝑐𝑐𝑐, where 𝑐𝑐 > 0 represents the firm’s marginal costs, and F is 
the fee paid from the customer to the firm in exchange for q units of the good (price for the package of 
units, rather than a unit price). The customer’s utility function is 𝑢𝑢(𝑞𝑞, 𝑇𝑇, 𝜃𝜃) = 𝜃𝜃 ∙ 𝑣𝑣(𝑞𝑞) − 𝐹𝐹, where 𝑢𝑢′ > 0 
and 𝑢𝑢′′ < 0. Parameter 𝜃𝜃 is privately observed by the consumer, and takes on either 𝜃𝜃𝐿𝐿 with probability 𝛽𝛽 
or 𝜃𝜃𝐻𝐻 with probability 1 − 𝛽𝛽, where 𝜃𝜃𝐻𝐻 > 𝜃𝜃𝐿𝐿. 

 

2. Complete Information 

[2nd Stage] For a given pair of fee 𝑇𝑇𝑖𝑖 and quantity 𝑞𝑞𝑖𝑖, (𝑇𝑇𝑖𝑖, 𝑞𝑞𝑖𝑖), consumers with valuation 𝜃𝜃𝑖𝑖 purchase the 
good if and only if  𝜃𝜃𝑖𝑖𝑣𝑣(𝑞𝑞𝑖𝑖) − 𝑇𝑇𝑖𝑖 ≥ 0 

[1st Stage] Observing 𝜃𝜃𝑖𝑖 (as we are in the complete-information version) and anticipating the buyers 
decision rule in the second stage, 𝜃𝜃𝑖𝑖𝑣𝑣(𝑞𝑞𝑖𝑖) − 𝑇𝑇𝑖𝑖 ≥ 0, the firm solves the PMP 

max
𝑇𝑇𝑖𝑖,𝑞𝑞𝑖𝑖

  𝑇𝑇𝑖𝑖 − 𝑐𝑐𝑞𝑞𝑖𝑖 

subject to   𝜃𝜃𝑖𝑖𝑢𝑢(𝑞𝑞𝑖𝑖) − 𝑇𝑇𝑖𝑖 ≥ 0 ← 𝑃𝑃. 𝐶𝐶. 

The participation constraint (P.C.) must bind. Otherwise 𝑇𝑇𝑖𝑖 can be further increased, thus increasing 
profits. Hence, 𝜃𝜃𝑖𝑖𝑣𝑣(𝑞𝑞𝑖𝑖) = 𝑇𝑇𝑖𝑖, which simplifies the above problem to the following unconstrained 
maximization problem 

max
𝑞𝑞𝑖𝑖

   𝜃𝜃𝑖𝑖𝑣𝑣(𝑞𝑞𝑖𝑖) − 𝑐𝑐𝑞𝑞𝑖𝑖 

Taking F.O.C with respect to 𝑞𝑞𝑖𝑖, 

𝜃𝜃𝑖𝑖𝑣𝑣′(𝑞𝑞𝑖𝑖) − 𝑐𝑐 ≤ 0 (= 0 in interior solutions) 

 

Hence, under complete information, 𝑞𝑞𝑖𝑖 is increased until the point in which the consumer’s marginal 
utility of additional units coincides with the firm’s marginal cost. As we next show, when the firm is 
uninformed about the customer’s type, this result doesn’t necesarily arise. 
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3. Incomplete Information 

The firm cannot observe the realization of 𝜃𝜃. The firm could offer contracts of the form (𝑇𝑇(𝑞𝑞), 𝑞𝑞), with 
function 𝑇𝑇(𝑞𝑞) being as general as you can imagine. 

For simplicity, let’s consider three types of contracts: 

• Linear pricing: 𝑇𝑇(𝑞𝑞) = 𝑝𝑝 ∙ 𝑞𝑞 customers pay 𝑝𝑝 for every unit they buy. 
• Nonlinear pricing (single two-part tariff for all types of customers) 
• Nonlinear pricing (two two-part tariffs one for each type of customer) 

 

3.1.  Linear pricing, 𝑻𝑻(𝒒𝒒) = 𝒑𝒑 ∙ 𝒒𝒒 

[2nd Stage] Every customer with type 𝜃𝜃𝑖𝑖 pays a price p per unit of q purchased, thus obtaining a utility 

𝜃𝜃𝑖𝑖𝑢𝑢(𝑞𝑞) − 𝑝𝑝𝑝𝑝  for all 𝑖𝑖 = {𝐻𝐻, 𝐿𝐿} 

In order to maximize his utility (for every given p), he increases q until  

𝜃𝜃𝑖𝑖𝑢𝑢1(𝑞𝑞) = 𝑝𝑝 

Solving for q, we find 𝜃𝜃𝑖𝑖 −Walrasian demand 

𝑞𝑞𝑖𝑖 = 𝐷𝐷𝑖𝑖(𝑝𝑝) 

Hence, 𝜃𝜃𝑖𝑖 −customer’s utility is  

𝜃𝜃𝑖𝑖𝑢𝑢(𝐷𝐷𝑖𝑖(𝑝𝑝) − 𝑝𝑝 ∙ 𝐷𝐷𝑖𝑖(𝑝𝑝) 

       

[1st Stage] By backward induction, the monopolist anticipates the demand function  𝐷𝐷𝑖𝑖(𝑝𝑝) for 𝜃𝜃𝑖𝑖 −type 
buyer. Hence, the firm maximizes expected profits:  

max
𝑝𝑝

  (𝑝𝑝 − 𝑐𝑐) ∙ [𝛽𝛽 ∙ 𝐷𝐷𝐿𝐿(𝑝𝑝) + (1 − 𝛽𝛽) ∙ 𝐷𝐷𝐻𝐻(𝑝𝑝)] 

Let 𝐷𝐷(𝑝𝑝) ≡ 𝛽𝛽 ∙ 𝐷𝐷𝐿𝐿(𝑝𝑝) + (1 − 𝛽𝛽) ∙ 𝐷𝐷𝐻𝐻(𝑝𝑝) denote the expected demand, which helps us simplify the above 
program to  

max
𝑝𝑝

  (𝑝𝑝 − 𝑐𝑐) ∙ 𝐷𝐷(𝑝𝑝) 

Taking FOC with respect to p yields  

𝐷𝐷(𝑝𝑝) + 𝑝𝑝 𝐷𝐷′ (𝑝𝑝) − 𝑐𝑐 = 0 

Solving for p, we obtain a linear price of 

𝑞𝑞𝑖𝑖                𝑞𝑞𝑖𝑖                     
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𝑝𝑝𝐿𝐿𝐿𝐿 = 𝑐𝑐 −
𝐷𝐷(𝑝𝑝𝐿𝐿𝐿𝐿)
𝐷𝐷′(𝑝𝑝𝐿𝐿𝐿𝐿) 

where 𝑝𝑝𝐿𝐿𝐿𝐿 > 𝑐𝑐 if 𝐷𝐷′(𝑝𝑝𝐿𝐿𝐿𝐿) < 0. Depending on the parameter values, it might be profitable for the seller to 
only serve 𝜃𝜃𝐻𝐻buyers.  

 

3.2. Single two-part tariff 

The firm sets a single two-part tariff (𝐹𝐹, 𝑝𝑝) to both types of customers, and each type of buyer decides to 
take it or leave it. 

Fee. From the UMP of each type of consumer, we obtained FOC of 𝜃𝜃𝑖𝑖𝑣𝑣′(𝑞𝑞) = 𝑝𝑝. Plotting them on the 
same figure, we find: 

θHv ’(q) 

q

$

p

qL = 
DL(p)

qH = 
DH(p)

θLv ’(q) 

 

where functions 𝜃𝜃𝑖𝑖𝑣𝑣′(𝑞𝑞) are decreasing in 𝑞𝑞 by the concavity of 𝑣𝑣(⋅), i.e., 𝑣𝑣′′ < 0 for all 𝑞𝑞. Hence, 
𝐷𝐷𝐻𝐻(𝑝𝑝) > 𝐷𝐷𝐿𝐿(𝑝𝑝), thus implying that net surpluses, 𝑆𝑆𝑖𝑖(𝑝𝑝), satisfy 

𝑆𝑆𝐻𝐻(𝑝𝑝) = 𝜃𝜃𝐻𝐻𝑣𝑣[𝐷𝐷𝐻𝐻(𝑝𝑝)] − 𝑝𝑝 ⋅ 𝐷𝐷𝐻𝐻(𝑝𝑝) > 𝜃𝜃𝐿𝐿𝑣𝑣[𝐷𝐷𝐿𝐿(𝑝𝑝)] − 𝑝𝑝 ⋅ 𝐷𝐷𝐿𝐿(𝑝𝑝) = 𝑆𝑆𝐿𝐿(𝑝𝑝) 

That is, 𝑆𝑆𝐻𝐻(𝑝𝑝) > 𝑆𝑆𝐿𝐿(𝑝𝑝). 

If the firm seeks the participation of both types of customers, we need the fee to satisfy 

𝐹𝐹 ≤ 𝑆𝑆𝐿𝐿(𝑝𝑝) < 𝑆𝑆𝐻𝐻(𝑝𝑝) 

More explicitly: 

• In the second stage, every customer with type 𝜃𝜃𝑖𝑖 purchases the good if and only if 𝐹𝐹 ≤ 𝑆𝑆𝑖𝑖(𝑝𝑝). 

• In the first stage, the firm anticipates the customers’ decision rule of 𝐹𝐹 ≤ 𝑆𝑆𝑖𝑖(𝑝𝑝), and chooses the 

single two part tariff that maximizes profits. 
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Mathematically, 

max
(𝐹𝐹,𝑝𝑝)

   𝛽𝛽[𝐹𝐹 + (𝑝𝑝 − 𝑐𝑐) ⋅ 𝐷𝐷𝐿𝐿(𝑝𝑝)] + (1 − 𝛽𝛽)[𝐹𝐹 + (𝑝𝑝 − 𝑐𝑐) ⋅ 𝐷𝐷𝐻𝐻(𝑝𝑝)] 

= 𝐹𝐹 + (𝑝𝑝 − 𝑐𝑐)[𝛽𝛽 ⋅ 𝐷𝐷𝐿𝐿(𝑝𝑝) + (1 − 𝛽𝛽) ⋅ 𝐷𝐷𝐻𝐻(𝑝𝑝)�������������������
𝐷𝐷(𝑝𝑝),  i.e., expected demand

] 

subject to   𝐹𝐹 ≤ 𝑆𝑆𝑖𝑖(𝑝𝑝) for all 𝑖𝑖 = {𝐻𝐻, 𝐿𝐿} 

However, the seller can increase 𝐹𝐹 until 𝐹𝐹 = 𝑆𝑆𝐿𝐿(𝑝𝑝). Raising it any further would lead the low-type 
customers to reject the purchase. Plugging 𝐹𝐹 = 𝑆𝑆𝐿𝐿(𝑝𝑝) into the above problem helps us obtain an 
unconstrained PMP (with only one choice variable, 𝑝𝑝), as follows 

max
𝑝𝑝

   𝑆𝑆𝐿𝐿(𝑝𝑝) + (𝑝𝑝 − 𝑐𝑐) ⋅ 𝐷𝐷(𝑝𝑝) 

Taking first-order conditions with respect to 𝑝𝑝 yields 

𝑆𝑆𝐿𝐿′(𝑝𝑝) + 𝐷𝐷(𝑝𝑝) + (𝑝𝑝 − 𝑐𝑐)𝐷𝐷′(𝑝𝑝) = 0 

Solving for 𝑝𝑝 and rearranging, we obtain a price of the single two part tariff, 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, of 

𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑐𝑐 −
𝐷𝐷(𝑝𝑝)
𝐷𝐷′(𝑝𝑝)

�����
+

�������
𝑝𝑝𝐿𝐿𝐿𝐿,  price under

linear pricing

+
𝑆𝑆𝐿𝐿′(𝑝𝑝)
𝐷𝐷′(𝑝𝑝)���
+

 

Where the last term is positive since 𝑆𝑆𝐿𝐿′(𝑝𝑝) < 0 and 𝐷𝐷′(𝑝𝑝) < 0. 

Remark: 𝑆𝑆𝑖𝑖′(𝑝𝑝) can be found by applying the Envelope Theorem on 

𝑆𝑆𝑖𝑖(𝑝𝑝) = 𝜃𝜃𝑖𝑖 ⋅ 𝑣𝑣[𝐷𝐷𝑖𝑖(𝑝𝑝)] − 𝑝𝑝 ⋅ 𝐷𝐷𝑖𝑖(𝑝𝑝) 

In particular, second-order effects are absent, so that 𝐷𝐷𝑖𝑖(𝑝𝑝) is unaffected by a price change. As a 
consequence 

𝑆𝑆𝑖𝑖′(𝑝𝑝) = 0 − 𝐷𝐷𝑖𝑖(𝑝𝑝) = −𝐷𝐷𝑖𝑖(𝑝𝑝) < 0 

Hence, prices in each setting are ranked as follows: 

𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑝𝑝𝐿𝐿𝐿𝐿 > 𝑐𝑐 (price under perfect competition) 

The firm then sets a single two-part tariff 

(𝐹𝐹, 𝑝𝑝) = (𝑆𝑆𝐿𝐿(𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆), 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

Practice: Considering a demand function 𝐷𝐷𝑖𝑖(𝑝𝑝) = 𝜃𝜃𝑖𝑖 − 𝑝𝑝, where 𝜃𝜃𝑖𝑖 = {1,2} and 𝛽𝛽 = 1
2
, find the profit-

maximizing two-part tariff. 
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In addition, 𝑞𝑞𝐻𝐻 = 𝐷𝐷𝐻𝐻(𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) > 𝐷𝐷𝐿𝐿(𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑞𝑞𝐿𝐿. We can depict this two-part tariff in the (𝐹𝐹, 𝑝𝑝)-
quadrant, as follows. 

pSTPT

F = SL(pSTPT )

SL(pSTPT ) + pSTPT

qL qH
q

F

 

Graphical representation of the indifference curves using the same (𝐹𝐹, 𝑝𝑝)-quadrant: 

q

F

θi -type 
indifference curve

Same utility from:
-Low F and low q

-High F and high q

 

q

F

ICi

ICi

Increasing utility
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We can now superimpose 𝐼𝐼𝐼𝐼 on top of the two-part tariff, obtaining: 

SL(pSTPT ) + pSTPT

qL qH
q

F

ICL

ICH

ICH

AL

AH

 

Some points about equilibrium behavior in the case of a single two-part tariff that we just analyzed: 

• Customer 𝜃𝜃𝐻𝐻 is better off at 𝐴𝐴𝐻𝐻 than at 𝐴𝐴𝐿𝐿 

• Customer 𝜃𝜃𝐿𝐿 is better off at 𝐴𝐴𝐿𝐿 than at 𝐴𝐴𝐻𝐻 

Motivation to move to other contracts (in particular, toward two two-part tariffs, which we analyze in the 
following section): 

• The seller could do better if he sets a contract that yields point 𝐴𝐴𝐻𝐻 to 𝜃𝜃𝐻𝐻-buyer (since this buyer is 

indifferent about accepting the contract meant for him or that of the 𝜃𝜃𝐿𝐿-customer). 

 

3.3. Several (or menu) two-part tariffs 

Consider a setting where the monopolist cannot observe the type of each consumer. Rather than offering a 
uniform price for all types of customers, or a single two-part tariff to all types of customers, the 
monopolist can design a menu of two-part tariffs, (𝐹𝐹𝐿𝐿, 𝑞𝑞𝐿𝐿) and (𝐹𝐹𝐻𝐻, 𝑞𝑞𝐻𝐻), with the property that the 
customer with type 𝑖𝑖 = {𝐿𝐿, 𝐻𝐻} has the incentives to self-select the two-part tariff (𝐹𝐹𝑖𝑖, 𝑞𝑞𝑖𝑖) meant for him.  

In this setting, the monopolist must guarantee that: 

• Both types of customers are willing to participate (i.e., the two-part tariff meant for each type of 
customer provides him with a weakly positive utility level), and  

• Both types of customers do not have incentives to choose the two-part tariff meant for the other 
type of customer, that is, type 𝑖𝑖 customer prefers (𝐹𝐹𝑖𝑖, 𝑞𝑞𝑖𝑖) over (𝐹𝐹𝑗𝑗, 𝑞𝑞𝑗𝑗) where 𝑗𝑗 ≠ 𝑖𝑖.  
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For compactness, the literature refers to the former conditions as “participation constraints,” as they 
guarantee the participation of all types of customers; whereas the latter conditions are referred to as 
“incentive compatibility” conditions. In particular, the participation constraints in this context are 

                                                                             𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝐹𝐹𝐿𝐿 ≥ 0                                                                         𝑃𝑃𝑃𝑃𝐿𝐿 

                                                                             𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝐹𝐹𝐻𝐻 ≥ 0,                                                                       𝑃𝑃𝑃𝑃𝐻𝐻 

while the incentive compatibility conditions are 

                                                                 𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝐹𝐹𝐿𝐿 ≥ 𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝐹𝐹𝐻𝐻                                                             𝐼𝐼𝐼𝐼𝐿𝐿 

                                                                 𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝐹𝐹𝐻𝐻 ≥ 𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝐹𝐹𝐿𝐿                                                             𝐼𝐼𝐼𝐼𝐻𝐻 

We can rearrange the above four inequalities and insert them as constraints into the monopolist’s profit 
maximization problem, as follows: 

max
𝐹𝐹𝐿𝐿,𝑞𝑞𝐿𝐿,𝐹𝐹𝐻𝐻,𝑞𝑞𝐻𝐻

𝑝𝑝[𝐹𝐹𝐻𝐻 − 𝑐𝑐𝑞𝑞𝐻𝐻] + (1 − 𝑝𝑝)[𝐹𝐹𝐿𝐿 − 𝑐𝑐𝑞𝑞𝐿𝐿] 

subject to 

𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿) ≥ 𝐹𝐹𝐿𝐿 

𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐻𝐻) ≥ 𝐹𝐹𝐻𝐻 

𝜃𝜃𝐿𝐿[𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝑢𝑢(𝑞𝑞𝐻𝐻)] + 𝐹𝐹𝐻𝐻 ≥ 𝐹𝐹𝐿𝐿 

𝜃𝜃𝐻𝐻[𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝑢𝑢(𝑞𝑞𝐿𝐿)] + 𝐹𝐹𝐿𝐿 ≥ 𝐹𝐹𝐻𝐻 

Since both 𝑃𝑃𝑃𝑃𝐻𝐻 and 𝐼𝐼𝐼𝐼𝐻𝐻 are now expressed in terms of the fee 𝐹𝐹𝐻𝐻, we can easily see that the monopolist 
increases 𝐹𝐹𝐻𝐻 until such fee coincides with the lowest of 𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐻𝐻) and 𝜃𝜃𝐻𝐻[𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝑢𝑢(𝑞𝑞𝐿𝐿)] + 𝐹𝐹𝐿𝐿, as 
depicted in figure 1, for all 𝑖𝑖 = {𝐿𝐿, 𝐻𝐻}. Otherwise, one (or both) constraints will be violated, leading the 
high-demand customer to not participate (and/or select the two-part tariff meant for the low-demand 
customer). We examine this result more closely in the next discussion. 

 

PCi is 
binding

ICi is 
binding

Maximal Fi that achives participation and self-selection

Fi 

Fi θi u(qi )  

θi u(qi )  θi [u(qi )- u(qj )] + Fj    

θi [u(qi )- u(qj )] + Fj    

Maximal Fi that achives participation and self-selection
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Figure 1 PC condition binds (upper panel) and IC condition binds (lower panel) 

 

High-demand customer. Let us first focus on the high-demand consumer and show that 𝐼𝐼𝐼𝐼𝐻𝐻 is binding, 
(the lower panel of figure 1 arises for this type of customer).  

Proof. An indirect way to show that 𝐼𝐼𝐼𝐼𝐻𝐻 binds, i.e., 𝐹𝐹𝐻𝐻 = 𝜃𝜃𝐻𝐻[𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝑢𝑢(𝑞𝑞𝐿𝐿)] + 𝐹𝐹𝐿𝐿, is to demonstrate that 
𝐹𝐹𝐻𝐻 < 𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐻𝐻) (i.e., as depicted be in the lower panel of Figure 1). By contradiction, consider that 
𝐹𝐹𝐻𝐻 = 𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐻𝐻). If this condition holds, then 𝐼𝐼𝐼𝐼𝐻𝐻 can be rewritten as 

                                                𝐹𝐹𝐻𝐻 − 𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐿𝐿) + 𝐹𝐹𝐿𝐿 ≥ 𝐹𝐹𝐻𝐻,  which simplifies to  𝐹𝐹𝐿𝐿 ≥ 𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐿𝐿) 

In addition, we can combine this result with the property that 𝜃𝜃𝐻𝐻 > 𝜃𝜃𝐿𝐿 to obtain 

𝐹𝐹𝐿𝐿 ≥ 𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐿𝐿) > 𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿) 

That is, 𝐹𝐹𝐿𝐿 > 𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿). This finding, however, violates the participation constraint of the low-demand 
customer, 𝑃𝑃𝑃𝑃𝐿𝐿, indicating that we have reached a contradiction and, therefore, 𝐹𝐹𝐻𝐻 < 𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐻𝐻) (i.e., 𝑃𝑃𝑃𝑃𝐻𝐻 
is not binding). Thus, 𝐼𝐼𝐼𝐼𝐻𝐻 is binding but 𝑃𝑃𝑃𝑃𝐻𝐻 is not, confirming that for the high-demand customer the 
lower panel of Figure 1 applies (i.e., 𝐹𝐹𝐻𝐻 = 𝜃𝜃𝐻𝐻[𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝑢𝑢(𝑞𝑞𝐿𝐿)] + 𝐹𝐹𝐿𝐿). Q.E.D. 

 

Low-demand customer. Let us now use a similar approach to show that the top panel of Figure 1 arises for 
the low-demand customer (i.e., 𝑃𝑃𝑃𝑃𝐿𝐿 binds since 𝐹𝐹𝐿𝐿 = 𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿)).  

Proof. Similarly as for high-demand customers, we can prove this result by instead showing that 𝐹𝐹𝐿𝐿 <
𝜃𝜃𝐿𝐿[𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝑢𝑢(𝑞𝑞𝐻𝐻)] + 𝐹𝐹𝐻𝐻 holds. Proving this result by contradiction, assume that 𝐹𝐹𝐿𝐿 = 𝜃𝜃𝐿𝐿[𝑢𝑢(𝑞𝑞𝐿𝐿) −
𝑢𝑢(𝑞𝑞𝐻𝐻)] + 𝐹𝐹𝐻𝐻. Plugging this expression into 𝐼𝐼𝐼𝐼𝐻𝐻 (which binds, as shown in our discussion of the high-
demand customer), we obtain 

𝜃𝜃𝐻𝐻[𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝑢𝑢(𝑞𝑞𝐿𝐿)] + 𝜃𝜃𝐿𝐿[𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝑢𝑢(𝑞𝑞𝐻𝐻)] + 𝐹𝐹𝐻𝐻 = 𝐹𝐹𝐻𝐻, 

This expression simplifies to  

𝜃𝜃𝐻𝐻[𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝑢𝑢(𝑞𝑞𝐿𝐿)] = 𝜃𝜃𝐿𝐿[𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝑢𝑢(𝑞𝑞𝐻𝐻)] 

and ultimately reduces to 𝜃𝜃𝐻𝐻 = 𝜃𝜃𝐿𝐿, violating the initial assumption 𝜃𝜃𝐻𝐻 > 𝜃𝜃𝐿𝐿. Therefore, 𝐹𝐹𝐿𝐿 =
𝜃𝜃𝐿𝐿[𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝑢𝑢(𝑞𝑞𝐻𝐻)] + 𝐹𝐹𝐻𝐻 cannot hold, but instead 𝐹𝐹𝐿𝐿 < 𝜃𝜃𝐿𝐿[𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝑢𝑢(𝑞𝑞𝐻𝐻)] + 𝐹𝐹𝐻𝐻 must be true. As a 
consequence, the top panel of Figure 1 applies for the low-demand customer, ultimately implying that 
𝑃𝑃𝑃𝑃𝐿𝐿 binds while 𝐼𝐼𝐼𝐼𝐿𝐿 does not. Q.E.D. 

 

Summarizing, from the high-demand customer we have that 𝜃𝜃𝐻𝐻[𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝑢𝑢(𝑞𝑞𝐿𝐿)] + 𝐹𝐹𝐿𝐿 = 𝐹𝐹𝐻𝐻 whereas 
from the low-demand customer we obtained that 𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿) = 𝐹𝐹𝐿𝐿. We can now plug this information about 
𝐹𝐹𝐻𝐻 and 𝐹𝐹𝐿𝐿 into the monopolist’s expected PMP, which now becomes an unconstrained maximization 
problem, as follows: 

max
𝑞𝑞𝐿𝐿,𝑞𝑞𝐻𝐻≥0

   𝑝𝑝[𝐹𝐹𝐻𝐻 − 𝑐𝑐𝑞𝑞𝐻𝐻] + (1 − 𝑝𝑝)[𝐹𝐹𝐿𝐿 − 𝑐𝑐𝑞𝑞𝐿𝐿] 
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= 𝑝𝑝 �𝜃𝜃𝐻𝐻[𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝑢𝑢(𝑞𝑞𝐿𝐿)] + 𝐹𝐹𝐿𝐿�����������������
𝐹𝐹𝐻𝐻

− 𝑐𝑐𝑞𝑞𝐻𝐻� + (1 − 𝑝𝑝) �𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿)�����
𝐹𝐹𝐿𝐿

− 𝑐𝑐𝑞𝑞𝐿𝐿� 

= 𝑝𝑝 �𝜃𝜃𝐻𝐻[𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝑢𝑢(𝑞𝑞𝐿𝐿)] + 𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿)�����
𝐹𝐹𝐿𝐿

− 𝑐𝑐𝑞𝑞𝐻𝐻� + (1 − 𝑝𝑝)[𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝑐𝑐𝑞𝑞𝐿𝐿] 

which ultimately simplifies to 

= 𝑝𝑝[𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐻𝐻) − (𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿)𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝑐𝑐𝑞𝑞𝐻𝐻] + (1 − 𝑝𝑝)[𝜃𝜃𝐿𝐿𝑢𝑢(𝑞𝑞𝐿𝐿) − 𝑐𝑐𝑞𝑞𝐿𝐿] 

Importantly, constraint 𝑃𝑃𝑃𝑃𝐿𝐿 binding implies that 𝐼𝐼𝐼𝐼𝐿𝐿 also holds (recall the lower panel of Figure 1), and 
constraint 𝐼𝐼𝐼𝐼𝐻𝐻 binding entails that 𝑃𝑃𝑃𝑃𝐻𝐻 is also satisfied. In other words, all four constraints hold. Taking 
first-order conditions with respect to 𝑞𝑞𝐻𝐻 yields 

𝑝𝑝[𝜃𝜃𝐻𝐻𝑢𝑢′(𝑞𝑞𝐻𝐻) − 𝑐𝑐] = 0,   or   𝜃𝜃𝐻𝐻𝑢𝑢′(𝑞𝑞𝐻𝐻) = 𝑐𝑐, 

Therefore, the amount offered to high-demand customers, 𝑞𝑞𝐻𝐻, is socially efficient (their demand coincides 
with marginal cost). As we discuss next, such efficient outcome does not arise for low-demand customers. 
In particular, taking first-order conditions with respect to 𝑞𝑞𝐿𝐿 we obtain 

𝑝𝑝[−(𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿)𝑢𝑢′(𝑞𝑞𝐿𝐿)] + (1 − 𝑝𝑝)[𝜃𝜃𝐿𝐿𝑢𝑢′(𝑞𝑞𝐿𝐿) − 𝑐𝑐] = 0, 

which can be rewritten as 

𝑢𝑢′(𝑞𝑞𝐿𝐿)[(1 − 𝑝𝑝)𝜃𝜃𝐿𝐿 − 𝑝𝑝(𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿)] = (1 − 𝑝𝑝)𝑐𝑐 

and further simplified to  

𝑢𝑢′(𝑞𝑞𝐿𝐿)[𝜃𝜃𝐿𝐿 − 𝜃𝜃𝐻𝐻𝑝𝑝] = (1 − 𝑝𝑝)𝑐𝑐 

 

Dividing both sides by (1 − 𝑝𝑝), we obtain 

𝑢𝑢′(𝑞𝑞𝐿𝐿) �
𝜃𝜃𝐿𝐿 − 𝜃𝜃𝐻𝐻𝑝𝑝

1 − 𝑝𝑝 � = 𝑐𝑐 

Note that this expression can alternatively be written as2 

𝑢𝑢′(𝑞𝑞𝐿𝐿) �𝜃𝜃𝐿𝐿 −
𝑝𝑝

1 − 𝑝𝑝
(𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿)� = 𝑐𝑐 

Figure 2 separately depicts the left- and right-hand side of the last expression. For comparison purposes, it 
also plots 𝑢𝑢′(𝑞𝑞𝐿𝐿) ∗ 𝜃𝜃𝐿𝐿, which helps identify the socially optimal output 𝑞𝑞𝐿𝐿𝑠𝑠𝑠𝑠 (i.e., that arising under 
complete information). 

                                                      
2 In order to find an expression in which 𝜃𝜃𝐿𝐿 stands alone inside the parenthesis, we set up the equation 𝜃𝜃𝐿𝐿−𝜃𝜃𝐻𝐻𝑝𝑝

1−𝑝𝑝
=

𝜃𝜃𝐿𝐿 − 𝑥𝑥. Solving for the unknown 𝑥𝑥, yields 𝑝𝑝
1−𝑝𝑝

(𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿).  
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Figure 2 Output for the low-demand customer 

Summarizing, the amount offered to high-demand customers is socially efficient (recall that 𝜃𝜃𝐻𝐻𝑢𝑢′(𝑞𝑞𝐻𝐻) =
𝑐𝑐). In other words, 𝑞𝑞𝐻𝐻 = 𝑞𝑞𝐻𝐻𝑠𝑠𝑠𝑠, and there is no output distortion for high-demand customers relative to 
complete information allocations. That is a common finding in principal-agent models where the principal 
(in this case the monopolist) cannot observe the private type of the agent (in this case the consumer). In 
contrast, the output offered to low-demand customers entails a distortion relative to complete information, 
𝑞𝑞𝐿𝐿 < 𝑞𝑞𝐿𝐿𝑠𝑠𝑠𝑠, as depicted in Figure 2. Furthermore, this output distortion 𝑞𝑞𝐿𝐿𝑠𝑠𝑠𝑠 − 𝑞𝑞𝐿𝐿 is increasing in term 
𝑝𝑝

1−𝑝𝑝
(𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿). Specifically, it increases in the frequency of high-type buyers, 𝑝𝑝, and on the difference 

between high- and low-type buyers, (𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿). 

In addition, the fact that constraint 𝑃𝑃𝑃𝑃𝐿𝐿 binds while 𝑃𝑃𝑃𝑃𝐻𝐻 does not, entails that only the high-demand 
customer retains a positive utility level, i.e., 𝜃𝜃𝐻𝐻𝑢𝑢(𝑞𝑞𝐻𝐻) − 𝐹𝐹𝐻𝐻 > 0. In other words, the firm’s lack of 
information provides the high-demand customer with an “information rent.” Intuitively, this information 
rent emerges from the seller’s attempt to reduce the incentives of the high-type customer to select the 
contract meant for the low type. In particular, while the low-demand buyer pays a lower fee, the output 
that he receives is sufficiently low to make it unattractive for the high-demand buyer, 𝑞𝑞𝐿𝐿 < 𝑞𝑞𝐿𝐿𝑠𝑠𝑠𝑠. In other 
words, the output distortion 𝑞𝑞𝐿𝐿𝑠𝑠𝑠𝑠 − 𝑞𝑞𝐿𝐿 that we described above stems from the seller’s purpose to reduce 
the information rent of the high-type buyer. 

 

Example. Consider a monopolist selling a textbook to two types of graduate students, low- and high-
demand, with utility function  

𝑈𝑈𝑖𝑖(𝑞𝑞𝑖𝑖, 𝐹𝐹𝑖𝑖) = 𝜃𝜃𝑖𝑖 �𝑞𝑞𝑖𝑖 −
𝑞𝑞𝑖𝑖2

2𝜃𝜃𝑖𝑖
� − 𝐹𝐹𝑖𝑖, 

c

q
L   q

L
SO 

u'(qL) [θL −
p

1 −  p (𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿)] 

u'(qL)· θL  

q
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where 𝑖𝑖 = {𝐿𝐿, 𝐻𝐻} and 𝜃𝜃𝐻𝐻 > 𝜃𝜃𝐿𝐿. In this context, we obtain the direct demand function 𝑞𝑞𝑖𝑖 = 𝜃𝜃𝑖𝑖 − 𝑝𝑝. In 
addition, assume that the proportion of high-demand (low-demand) students is 𝛾𝛾 (1 − 𝛾𝛾, respectively). 
The monopolist’s constant marginal cost is 𝑐𝑐 > 0, which satisfies 𝜃𝜃𝑖𝑖 > 𝑐𝑐 for all 𝑖𝑖 = {𝐿𝐿, 𝐻𝐻}. Consider for 
simplicity that 𝜃𝜃𝐿𝐿 > 𝜃𝜃𝐻𝐻+𝑐𝑐

2
, which implies that each type of student would buy the textbook, both when the 

firm practices uniform pricing and when it sets two-part tariffs (as we next show). 

Uniform pricing. Consider first that the monopolist does not practice price discrimination (i.e., it sets a 
uniform price that induces both types of customers to purchase positive units). In this setting, the 
monopolist sets a unique price p that solves the expected PMP 

max
𝑝𝑝

  𝛾𝛾[(𝑝𝑝 − 𝑐𝑐)(𝜃𝜃𝐿𝐿 − 𝑝𝑝)] + (1 − 𝛾𝛾)[(𝑝𝑝 − 𝑐𝑐)(𝜃𝜃𝐻𝐻 − 𝑝𝑝)], 

where 𝑞𝑞𝑖𝑖 = 𝜃𝜃𝑖𝑖 − 𝑝𝑝 for every type-i customer. Taking first-order conditions with respect to 𝑝𝑝 yields 

𝛾𝛾(𝜃𝜃𝐿𝐿 − 𝑝𝑝) − 𝛾𝛾(𝑝𝑝 − 𝑐𝑐) + (1 − 𝛾𝛾)(𝜃𝜃𝐻𝐻 − 𝑝𝑝) − (1 − 𝛾𝛾)(𝑝𝑝 − 𝑐𝑐) = 0 

And solving for p we obtain the uniform price  

𝑝𝑝𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =
𝛾𝛾𝜃𝜃𝐿𝐿 + (1 − 𝛾𝛾)𝜃𝜃𝐻𝐻 + 𝑐𝑐

2
, 

which yields monopoly profits of 

𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =
[𝛾𝛾𝜃𝜃𝐿𝐿 + (1 − 𝛾𝛾)𝜃𝜃𝐻𝐻 − 𝑐𝑐]2

4
 

Note that the monopolist could use a uniform price to only serve high-demand students. The price that 
would maximize its profits in this case solves 

max
𝑝𝑝

  (1 − 𝛾𝛾)(𝑝𝑝 − 𝑐𝑐)(𝜃𝜃𝐻𝐻 − 𝑝𝑝) 

thus ignoring the segment of low-demand students. Taking first-order conditions with respect to 𝑝𝑝 and 
solving for 𝑝𝑝 yields 𝑝𝑝𝐻𝐻 = 𝜃𝜃𝐻𝐻+𝑐𝑐

2
.  In this context, monopoly profits become 

𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈−𝐻𝐻 = (1 − 𝛾𝛾)
(𝜃𝜃𝐻𝐻 − 𝑐𝑐)2

4
, 

which are larger than those when serving both types of students (i.e., 𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈−𝐻𝐻 > 𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) if the 
proportion of low-demand customers, 𝛾𝛾, is sufficiently small, that is, 

𝛾𝛾 <
(𝜃𝜃𝐻𝐻 − 𝑐𝑐)(𝜃𝜃𝐻𝐻 − 2𝜃𝜃𝐿𝐿 + 𝑐𝑐)

(𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿)2
. 

Intuitively, the frequency of high-value customers is large, thus inducing the seller ignore low-value 
customers to focus on high-value customers alone. For instance, parameter values 𝜃𝜃𝐻𝐻 = 5, 𝜃𝜃𝐿𝐿 = 2, 𝑐𝑐 = 1 
and 𝛾𝛾 = 3

4
 satisfy this condition since 

𝛾𝛾 <
(𝜃𝜃𝐻𝐻 − 𝑐𝑐)(𝜃𝜃𝐻𝐻 − 2𝜃𝜃𝐿𝐿 + 𝑐𝑐)

(𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿)2
=

(5 − 1)(5 − 4 + 1)
(5 − 2)2

=
8
9

. 
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Otherwise, if 𝛾𝛾 > 8
9
≅ 0.88, the proportion of low-value customers is large enough to induce the seller to 

not ignore this type of buyers, and thus serve both types. 

 

Two-part tariffs. Let us now consider that the monopolist offers a menu of two-part tariffs to each type of 
student (i.e., (𝐹𝐹𝐿𝐿, 𝑞𝑞𝐿𝐿) and (𝐹𝐹𝐻𝐻, 𝑞𝑞𝐻𝐻)). From the previous discussion, we know that 𝐼𝐼𝐼𝐼𝐻𝐻 and 𝑃𝑃𝑃𝑃𝐿𝐿 bind. 
Therefore,  

𝐹𝐹𝐿𝐿 = 𝜃𝜃𝐿𝐿 �𝑞𝑞𝐿𝐿 −
𝑞𝑞𝐿𝐿2

2𝜃𝜃𝐿𝐿
�  and  𝐹𝐹𝐻𝐻 = 𝜃𝜃𝐻𝐻 ��𝑞𝑞𝐻𝐻 −

𝑞𝑞𝐻𝐻2

2𝜃𝜃𝐻𝐻
� − �𝑞𝑞𝐿𝐿 −

𝑞𝑞𝐿𝐿2

2𝜃𝜃𝐿𝐿
�� + 𝜃𝜃𝐿𝐿 �𝑞𝑞𝐿𝐿 −

𝑞𝑞𝐿𝐿2

2𝜃𝜃𝐿𝐿
�. 

Hence, the monopolist’s PMP becomes  

max
𝑞𝑞𝐿𝐿,𝑞𝑞𝐻𝐻≥0

   𝛾𝛾[𝐹𝐹𝐻𝐻 − 𝑐𝑐𝑞𝑞𝐻𝐻] + (1 − 𝛾𝛾)[𝐹𝐹𝐿𝐿 − 𝑐𝑐𝑞𝑞𝐿𝐿] 

= 𝛾𝛾

⎣
⎢
⎢
⎡
𝜃𝜃𝐻𝐻 ��𝑞𝑞𝐻𝐻 −

𝑞𝑞𝐻𝐻2

2𝜃𝜃𝐻𝐻
� − �𝑞𝑞𝐿𝐿 −

𝑞𝑞𝐿𝐿2

2𝜃𝜃𝐿𝐿
�� + 𝜃𝜃𝐿𝐿 �𝑞𝑞𝐿𝐿 −

𝑞𝑞𝐿𝐿2

2𝜃𝜃𝐿𝐿
�

���������������������������������
𝐹𝐹𝐻𝐻

− 𝑐𝑐𝑞𝑞𝐻𝐻

⎦
⎥
⎥
⎤

+ (1 − 𝛾𝛾)

⎣
⎢
⎢
⎡
𝜃𝜃𝐿𝐿 �𝑞𝑞𝐿𝐿 −

𝑞𝑞𝐿𝐿2

2𝜃𝜃𝐿𝐿
�

���������
𝐹𝐹𝐿𝐿

− 𝑐𝑐𝑞𝑞𝐿𝐿

⎦
⎥
⎥
⎤

= 𝜃𝜃𝐻𝐻𝛾𝛾 �𝑞𝑞𝐻𝐻 −
𝑞𝑞𝐻𝐻2

2𝜃𝜃𝐻𝐻
� + (𝜃𝜃𝐿𝐿 − 𝜃𝜃𝐻𝐻𝛾𝛾) �𝑞𝑞𝐿𝐿 −

𝑞𝑞𝐿𝐿2

2𝜃𝜃𝐿𝐿
� − 𝑐𝑐𝑐𝑐𝑞𝑞𝐻𝐻 − 𝑐𝑐(1 − 𝛾𝛾)𝑞𝑞𝐿𝐿 

Taking first-order conditions with respect to 𝑞𝑞𝐻𝐻 and 𝑞𝑞𝐿𝐿 yields 

𝛾𝛾𝜃𝜃𝐻𝐻 �1 −
𝑞𝑞𝐻𝐻
𝜃𝜃𝐻𝐻
� = 𝑐𝑐𝑐𝑐 → 𝑞𝑞𝐻𝐻 = 𝜃𝜃𝐻𝐻 − 𝑐𝑐 

(𝜃𝜃𝐿𝐿 − 𝜃𝜃𝐻𝐻𝛾𝛾) �1 −
𝑞𝑞𝐿𝐿
𝜃𝜃𝐿𝐿
� = 𝑐𝑐(1 − 𝛾𝛾) → 𝑞𝑞𝐿𝐿 = 𝜃𝜃𝐿𝐿 − 𝑐𝑐

𝜃𝜃𝐿𝐿(1 − 𝛾𝛾)
(𝜃𝜃𝐿𝐿 − 𝜃𝜃𝐻𝐻𝛾𝛾) = 𝜃𝜃𝐿𝐿 − 𝑐𝑐

1 − 𝛾𝛾

1 − 𝜃𝜃𝐻𝐻
𝜃𝜃𝐿𝐿
𝛾𝛾

, 

which are both positive since 𝜃𝜃𝐿𝐿 > 𝑐𝑐 1−𝛾𝛾

1−𝜃𝜃𝐻𝐻𝜃𝜃𝐿𝐿
𝛾𝛾

 , given that 𝜃𝜃𝐻𝐻 > 𝑐𝑐 by definition. On the other hand, socially 

optimal outputs can be solved by setting marginal utility equals to marginal cost (i.e., 𝑢𝑢′𝑖𝑖(𝑞𝑞𝑖𝑖) =
𝜃𝜃𝑖𝑖 �1 − 𝑞𝑞𝑖𝑖

𝜃𝜃𝑖𝑖
� = 𝑐𝑐), thus yielding 𝑞𝑞𝐻𝐻𝑆𝑆𝑆𝑆 = 𝜃𝜃𝐻𝐻 − 𝑐𝑐 and 𝑞𝑞𝐿𝐿𝑆𝑆𝑆𝑆 = 𝜃𝜃𝐿𝐿 − 𝑐𝑐. 

We can then compare 𝑞𝑞𝑖𝑖 against 𝑞𝑞𝑖𝑖𝑆𝑆𝑆𝑆 for every type-i customer obtaining that  𝑞𝑞𝐻𝐻 = 𝑞𝑞𝐻𝐻𝑆𝑆𝑆𝑆, and that 
𝑞𝑞𝐿𝐿 < 𝑞𝑞𝐿𝐿𝑆𝑆𝑆𝑆, since  

𝜃𝜃𝐿𝐿 − 𝑐𝑐
1 − 𝛾𝛾

1 − 𝜃𝜃𝐻𝐻
𝜃𝜃𝐿𝐿
𝛾𝛾

< 𝜃𝜃𝐿𝐿 − 𝑐𝑐 

This reduces to 1 − 𝛾𝛾 > 1 − 𝜃𝜃𝐻𝐻
𝜃𝜃𝐿𝐿
𝛾𝛾, which is true given that 𝜃𝜃𝐻𝐻 > 𝜃𝜃𝐿𝐿 by definition. The monopolist can 

obtain larger profits by practicing second-degree price discrimination (two-part tariffs) than by setting a 
uniform price (either to attract both or only one type of customer). Using the same parameter values as 
under uniform pricing, 𝜃𝜃𝐻𝐻 = 5, 𝜃𝜃𝐿𝐿 = 2, 𝑐𝑐 = 1 and 𝛾𝛾 = 3

4
, we obtain we obtain output levels 𝑞𝑞𝐻𝐻 = 4, 
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𝑞𝑞𝐿𝐿 = 16
7

, and fees of 𝐹𝐹𝐻𝐻 = 444
49

≅ 9.06 and 𝐹𝐹𝐿𝐿 = 96
49
≅ 1.95. As a consequence, expected profits from two-

part tariffs are  

𝜋𝜋𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛾𝛾[𝐹𝐹𝐻𝐻 − 𝑐𝑐𝑞𝑞𝐻𝐻] + (1 − 𝛾𝛾)[𝐹𝐹𝐿𝐿 − 𝑐𝑐𝑞𝑞𝐿𝐿] =
26
7
≅ 3.71 

In contrast, those under uniform pricing become 

𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = [𝛾𝛾𝜃𝜃𝐿𝐿+(1−𝛾𝛾)𝜃𝜃𝐻𝐻−𝑐𝑐]2

4
= 49

64
≅ 0.76, and 

𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈−𝐻𝐻 = (1 − 𝛾𝛾)
(𝜃𝜃𝐻𝐻 − 𝑐𝑐)2

4
= 1 

Hence, practicing two-part tariffs is profit-enhancing for the monopolist since  

𝜋𝜋𝑇𝑇𝑇𝑇𝑇𝑇 > 𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈−𝐻𝐻 > 𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈.  


